

QIAseq miRNA Library Kit

The newest solution for gel-free miRNA sequencing

Jonathan Shaffer, Ph.D.

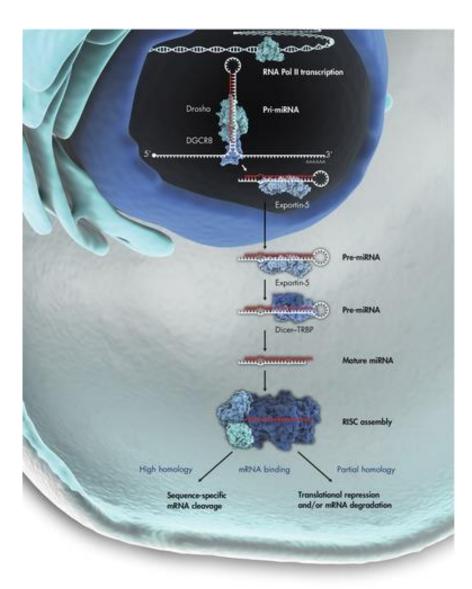
Jonathan.Shaffer@qiagen.com

Associate Director, Product Development

QIAGEN products shown here are intended for molecular biology applications. These products are not intended for the diagnosis, prevention or treatment of a disease.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at **www.qiagen.com** or can be requested from QIAGEN Technical Services or your local distributor.

- miRNA background
- QIAseq miRNA sequencing: Product overview
- 3 Data analysis overview
- 4 Performance and application data
- 5 Summary and questions



- miRNA background
- 2 QIAseq miRNA sequencing: Product overview
- 3 Data analysis overview
- 4 Performance and application data
- 5 Summary and questions

miRNAs are ~21 nucleotide, small noncoding RNAs that are expressed in most tissues

Changes in miRNA expression can be correlated with gene expression changes in:

- Development
- Differentiation
- Signal transduction
- Infection
- Aging
- Disease

Role in cancer: miRNAs are associated with cell proliferation, resistance to apoptosis, invasiveness and differentiation in cancer cells

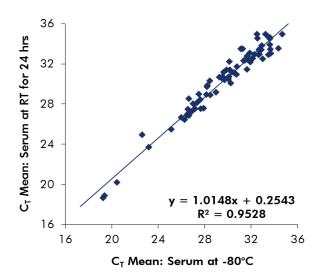
Why quantify miRNAs?

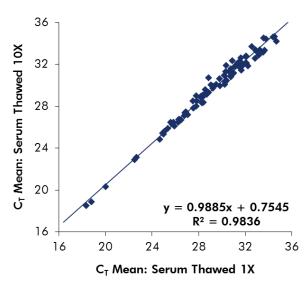
Using a signature of altered miRNA expression to differentiate cancer tissue from normal tissue

Profiling circulating blood or tumor-derived exosomal miRNAs, surpassing the invasive procedures to aid in early detection of cancers Using miRNA-based classifier to identify the tissue of origin for cancers of unknown primaries

miRNAs in cancer diagnosis

Distinguishing tumor subtypes using a panel of miRNAs that show differential expression within one cancer type


Studying SNPs in the miRNA genes, miRNA binding sites in the target mRNA genes or in the miRNA processing/machinery pathway genes to predict cancer predisposition


Source: Paranjape. et. al. (2009) Gut.

Quantifying miRNAs help identify novel expression patterns for miRNAs – both annotated (i.e. in miRBase) and non-annotated (i.e. identified using small RNA sequencing).

Why are circulating miRNAs promising biomarker candidates?

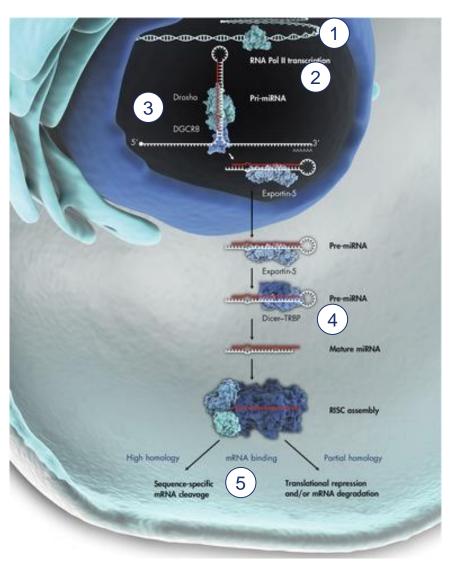
Expressed in most biofluids

- Serum, plasma, CSF, urine and saliva
- Robustly expressed in serum and plasma

Minimally invasive and easily liberated

 Sensitive, specific and precise platforms exist for miRNA quantification

Protected from degradation


- Resistant to freeze-thaw cycles
- Stable at room temperature for 24 hours

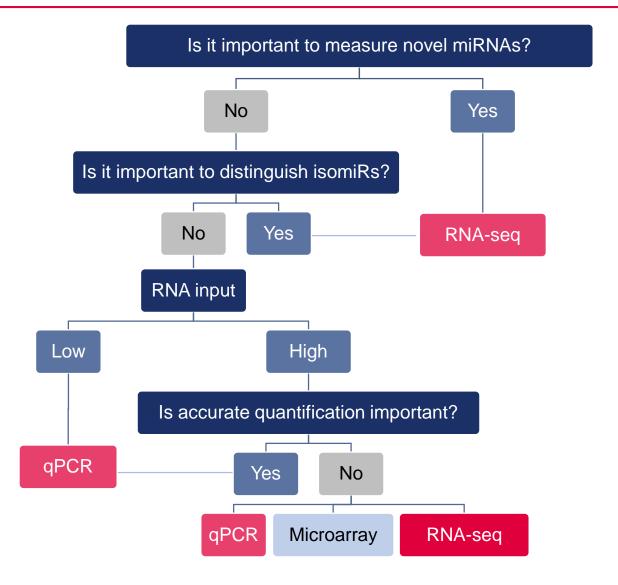
miRNA expression is associated with normal and disease biology.

Disruption of miRNA–mRNA interaction

- (1) Genomic instability
 - Amplification or deletion
 - Translocation
 - Insertional mutagenesis
- (2) Altered transcription
 - Methylation
 - Histone modification
 - Transcription factor
- 3 Drosha processing
- 4 Dicer processing
- (5) Loss of miRNA binding site in target mRNA
 - SNP or mutation
 - Alternative splicing
 - Loss or change of 3'-UTR

miRNAs as biomarkers

- Tissue-based miRNA profiling for biomarker discovery
- miRNA profile-based classification of tissues of unknown origin
- Circulating miRNA biomarkers
- Forensics


Understanding gene regulation

- Developmental biology
- Novel miRNA discovery
- Studying miRNA-mRNA and miRNA-protein interactions
- Total RNA discovery integrative analyses of miRNAs in the context of gene regulatory networks

Source: Pritchard, C. C. et. al. (2012) Nature Rev. Genet. 13, 358-369

Source: Pritchard, C. C. et. al. (2012) Nature Rev. Genet. 13, 358-369

Current challenges facing miRNA sequencing

Inconvenient sample inputs

- Kits require up to 1 µg of sample input and not ideal with lower inputs
- May not be compatible or optimized for biofluids

Poor data quality

- On target miRNA NGS reads account for only 20–30% of total reads
- Adapter dimers eat away your read budget
- Gel band excision is non-precise (not 100% miRNA)
- Biofluid samples may be contaminated with similar-sized RNA types

Tedious workflow

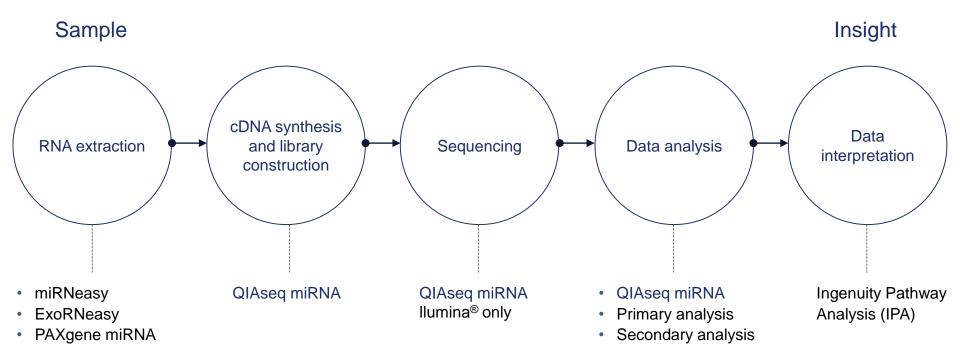
- Gel-based workflows take multiple days to get to sequencing
- Large sample numbers become tedious with gel-based workflows
- Optimization of sample isolation is not done

miRNA sequencing

Novel miRNA discovery and sample screening

Real-time PCR NGS validation and expression analysis

- Novel miRNA discovery
- Sample screening
- Accurate quantification
- Broad RNA input range
- No gels



- 1 miRNA background
- QIAseq miRNA sequencing: Product overview
- 3 Data analysis overview
- 4 Performance and application data
- 5 Summary and questions

QIAseq miRNA workflow: From Sample to Insight

Sample preparation: A total RNA solution for every sample type

Cells, fresh tissue and frozen tissue

- miRNeasy Mini Kit
- miRNeasy Micro Kit
- miRNeasy 96 Kit

FFPE tissue

miRNeasy FFPE Kit

Fluids (serum, plasma, urine, CSF and saliva)

miRNeasy Serum/Plasma Kit

Exosome enrichment/isolation from serum/plasma

- exoRNeasy Serum/Plasma Midi Kit
- exoRNeasy Serum/Plasma Maxi Kit

PAXgene Blood miRNA Kit PAXgene Tissue miRNA Kit

Overview of QIAseq miRNA products

QIAseq miRNA Library Kit

12 rxn: 331502

96 rxn: 331505

 What is included? 3' ligation, 5' ligation, reverse-transcription, cDNA cleanup, library amplification, library cleanup reagents and quality control primers

QIAseq miRNA NGS 12 Index

• 12 rxn: 331592

 What is included? Sequencing adapters, primers and indices compatible with Illumina platforms – 12 indices for 12 samples

QIAseq miRNA NGS 48 Index

96 rxn: 331595

 What's included? Sequencing adapters, primers and indices compatible with Illumina platforms – two 48 indices for 96 samples

QIAseq miRNA overview

What is the kit?

miRNA-focused next-generation sequencing library prep kit and integrated bioinformatics/data analysis solution

Compatible with Illumina sequencers

What can be done with the sequencing data?

- Differential expression calculations of miRNA from highly multiplexed samples
- Novel miRNA discovery

What are the distinguishing features of the prep kit?

- Gel-free, rapid workflow
- Broad RNA input: 1–500 ng
 - No adapter dimers at any RNA input amount
- Library prep from serum, plasma, biofluids, cells and tissues (any species)
- Integrated Unique Molecular Index (UMI) technology
- Highly optimized chemistry
- All-in-one-box solution

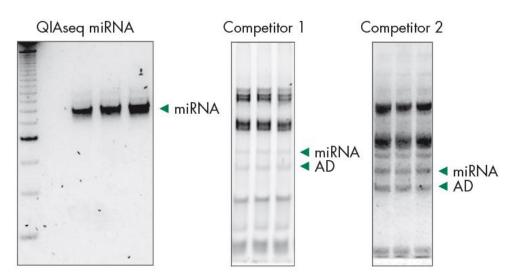
QIAseq miRNA Library Kit: Unparalleled miRNA-focused sequencing for robust miRNA quantification and discovery.

QIAseq miRNA mapping rates and specifications

miRNA mapping rates routinely observed

	QIAseq miRNA Kits	Competitors' kits	
Cell lines	50-60% or greater	20-30% average post gel	
Tissues	75% or greater	30-40% average post gel	
Serum/plasma	15-30% or greater	1-15% average post gel	

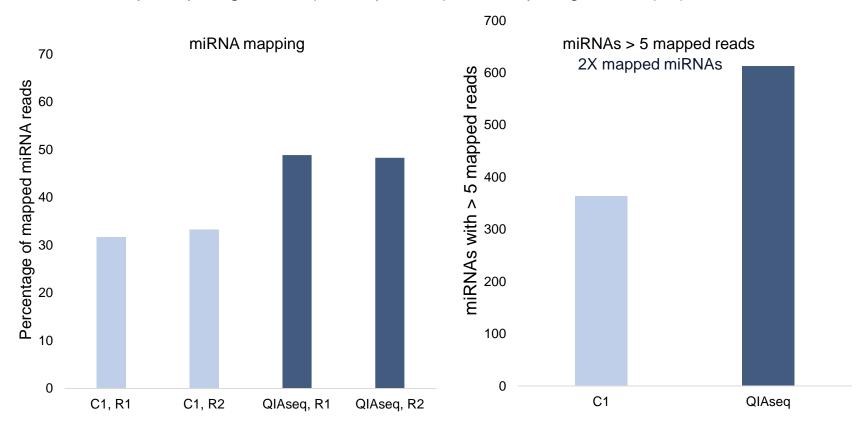
QIAseq miRNA Kit: Specifications


- Sample type:
 - Cells, fresh or frozen tissue, FFPE tissue, serum/plasma and other biofluids
 - Animal and plant samples
 - Any species
- Total RNA input range (cells/tissues): 1–500 ng
- Total RNA input recommendation (serum/plasma): 5 μl when RNA has been isolated from 200 μl of sample
- What RNAs are included in library prep?
 - Highly optimized for miRNA
 - piRNAs will also be efficiently sequenced
- Multiplex capability: 48 samples
- Sequencer compatibility: Illumina
- Total library construction time: 8 hours (3 hours hands-on)

- QIAseq miRNA vs. two competitor (C) kits
 - RNA amounts: 100 ng (QIAseq miRNA), 1 μg (C1) and 100 ng (C2)

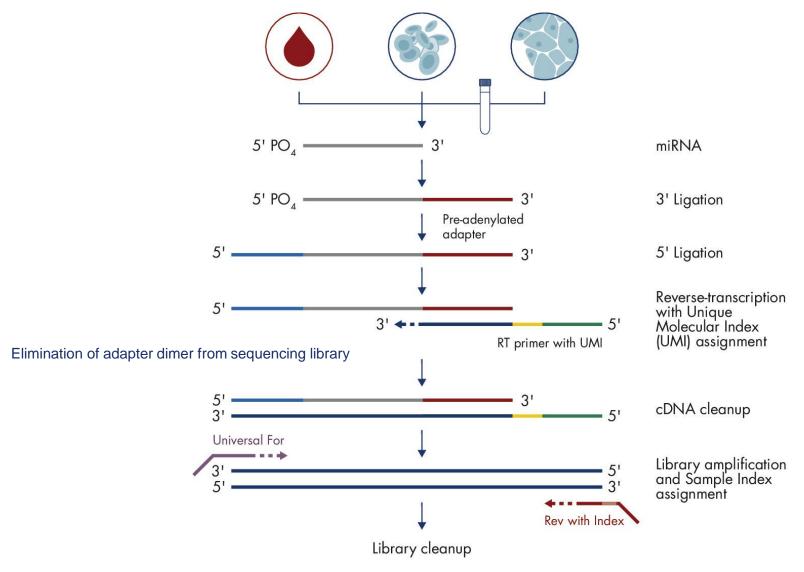
PAGE gel after standard library prep protocol

AD: Adapter dimer


With the QIAseq miRNA standard protocol, a robust, specific miRNA library is generated with negligible background. Other commercial options are fraught with side-products, including adapter dimers.

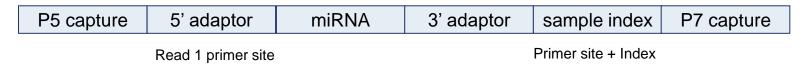
QIAseq miRNA Library Kit outperforms the competition

Next-generation sequencing: QIAseq miRNA and competitor 1 (C1)

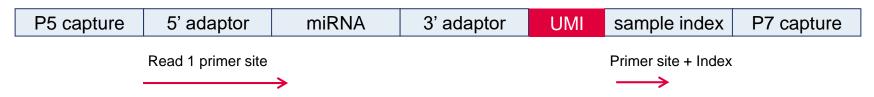

- For C1, prior to sequencing, miRNA library was excised and purified from a PAGE gel
- MiSeq: 75 bp Single-Read (QIAseq miRNA) and 50 bp Single-Read (C1)

With QIAseq miRNA, increase your mapped miRNA reads (as a result of reduced bias and improved sensitivity) while reducing your workflow time.

QIAseq miRNA: Library construction

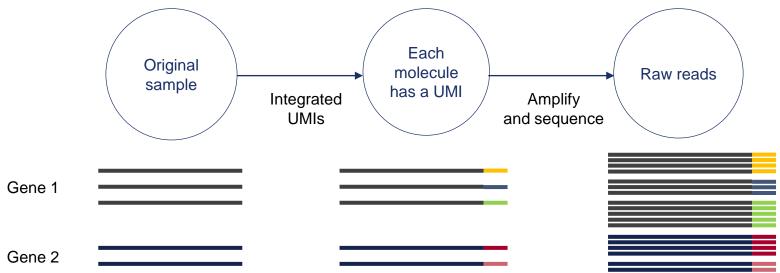


Library pre-seq QC, determining library concentration, preparartion for sequencing and data analysis


QIAseq miRNA library

Other kits

- 50 bp read
- 48 possible sample indices


QIAseq miRNA Library Kit

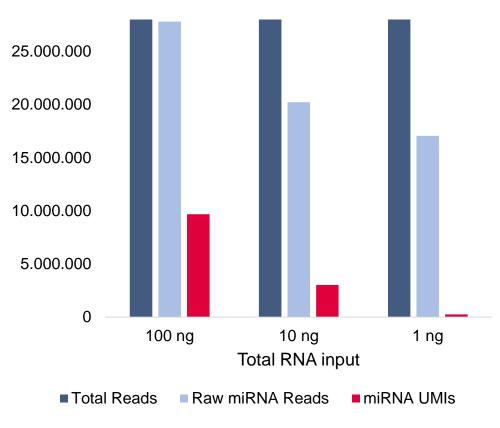
- 75 bp read to make use of the UMI
 - Note: 50 bp read is possible, but the UMI will not be sequenced
- 48 possible sample indices
 - UMI enables precision quantification of miRNA molecules following next-generation sequencing.

The principle of Unique Molecular Indices (UMIs)

Original sample (3:2 ratio of gene 1 to gene 2)

- Gene 1: 3 molecules
- Gene 2: 2 molecules

Interpretation of raw reads (2:1 of gene 1 to gene 2)


- Gene 1: 12 reads
- Gene 2: 6 reads

Interpretation of UMIs (3:2 ratio of gene 1 to gene 2)

- Reads are collapsed based on molecule counts
- Gene 1: 12 reads but 3 molecules are identified due to UMIs
- Gene 2: 6 reads but 2 molecules are identified due to UMIs

Quantification based on UMIs reflects quantities of original RNA molecules.

Assessment of raw miRNA reads

- Sequencing of the same miRNA molecule over and over results in an overestimation of miRNA expression
- The lower the RNA input, the lower the effect

Assessment of miRNA UMIs

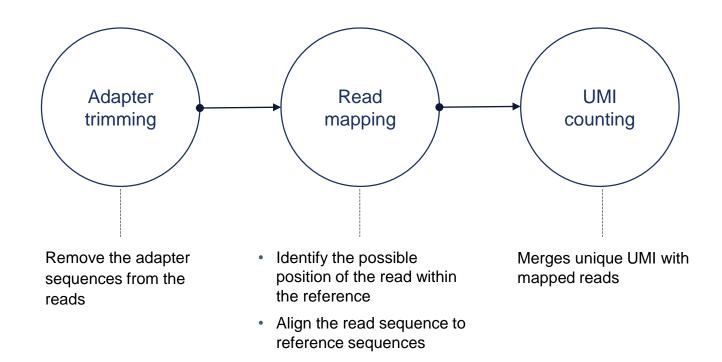
- Individual miRNA molecules are being counted, resulting in a true assessment of miRNA expression
- The lower the RNA input, the more powerful the UMIs

UMIs give a true readout of miRNA expression.

- 1 miRNA background
- 2 QIAseq miRNA sequencing: Product overview
- 3 Data analysis overview
- 4 Performance and application data
- 5 Summary and questions

QIAseq miRNA: Primary data analysis

- Free, easy to use primary data analysis: www.qiagen.com/geneglobe
- Species: Human, mouse, rat or other species (all of miRBase)



Note: Acceptable file extensions are ".fastq" or ".fastq.gz" for Illumina reads, and ".basecaller.bam" for lon reads. Please submit only unaligned base-caller bam files generated by Torrent Server 3.4.1 or higher. Please do not submit aligned bam files. Please DO NOT refresh the browser or navigate to other pages while uploading files.

QIAseq miRNA: Primary data analysis

QIAseq miRNA: Primary data analysis output

Summary tab

4	А	В	С
	read set	Sample 1,	Sample 2,
1	reau set	Rep 2	Rep 1
2	total_reads	3,485,926	3,454,577
3	no_adapter_reads	245,252	321,093
4	too_short_reads	916,139	737,228
5	UMI_defective_reads	143,102	192,311
6	miRNA_Reads	1,250,002	1,333,379
7	hairpin_Reads	3,319	2,787
8	piRNA_Reads	26,771	29,049
9	rRNA_Reads	99,637	93,880
10	tRNA_Reads	22,192	18,248
11	mRNA_Reads	12,305	12,127
12	otherRNA_Reads	115,790	149,227
13	notCharacterized_Mappable	143,611	135,715
14	not Characterized_not Mappable	507,806	429,533

miR tab

	А	В	С	D	Е
1	miRNA	Sample 1, Rep 2 - UMI	Sample 2, Rep 1 - UMI	Sample 1, Rep 2 - Reads	Sample 2, Rep 1 - Reads
2	hsa-miR-16-5p	112,095	96,568	224,770	196,617
3	hsa-miR-126-3p	80,983	77,107	164,836	160,661
4	hsa-let-7a-5p	43,816	39,426	84,078	76,639
5	hsa-miR-223-3p	36,192	50,904	71,624	104,480

Features of the primary analysis report

- Summary tab: Important mapping metrics for the sequencing run
- miR tab: Mapped reads and UMI counts for each miRNA found in miRBase
- notCharacterized mappable tab: Mapped reads and UMI counts for each sequence that aligns to the genome

QIAseq miRNA primary analysis output gives a complete summary of important sequencing metrics and UMI counts for each mapped miRNA.

QIAseq miRNA: Secondary data analysis

▶ Choose Data Analysis Type

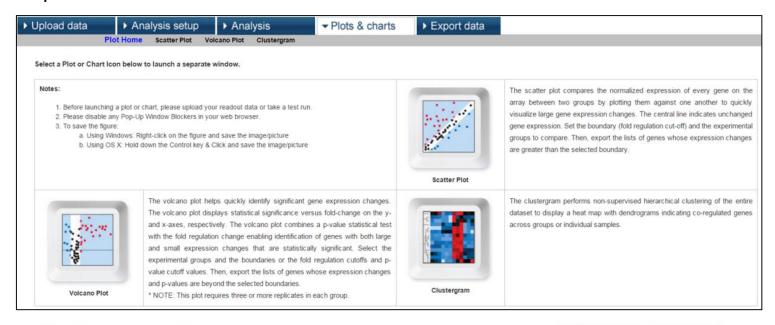
▶ Specify CatNo

Free, easy-to-use secondary data analysis: qiagen.com/geneglobe

What can you do?

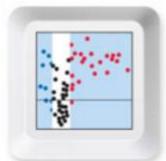
Perform gene expression analysis

How can you normalize the data?


- geNorm
- Total Molecular Tag Count
- DESeq2
- Trimmed Mean of M (edgeR)

What is the output?

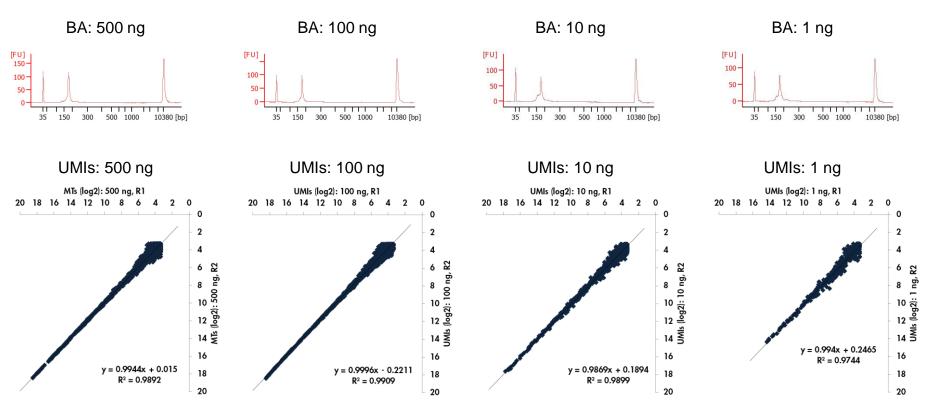
- Fold-regulation results
- Scatter plots, volcano plots and clustergrams
- Ingenuity Pathway Analysis (IPA) upload file


QIAseq targeted RNA secondary data analysis: Plots and charts

Visual representations of data

Volcano plot

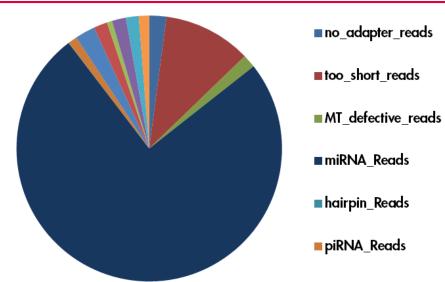
Clustergram

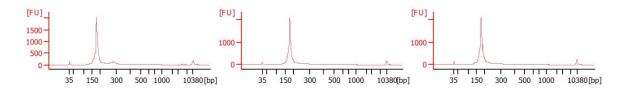

- 1 miRNA background
- 2 QIAseq miRNA sequencing: Product overview
- 3 Data analysis overview
- 4 Performance and application data
- 5 Summary and questions

QIAseq miRNA: Input as low as 1 ng without adapter dimers

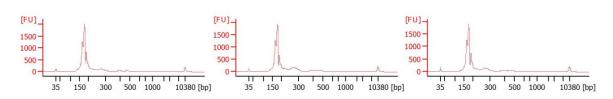
QIAseq miRNA Library Kit workflow on kidney total RNA

- RNA amounts: 500 ng, 100 ng, 10 ng and 1 ng
- Sample QC: Bioanalyzer (BA)
- Sequencing: NextSeq®, 75 bp Single Read


The QIAseq miRNA workflow enables robust, reproducible results from 1-500 ng.


Cells and tissues: High mapped miRNA percentages

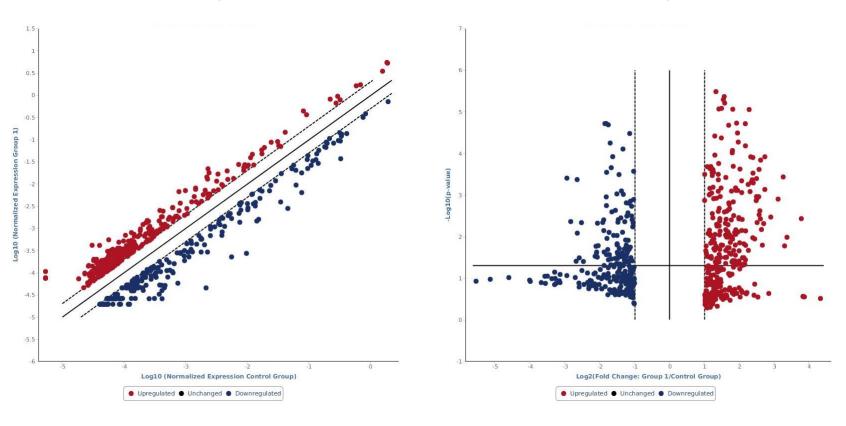
QIAseq miRNA Library Kit workflow on kidney (K) and lung (L) total RNA


- RNA amount: 100 ng (n = 3 of each tissue)
- Sample QC: Bioanalyzer (BA)
- Sequencing: NextSeq, 75 bp Single Read

BA: Kidney libraries

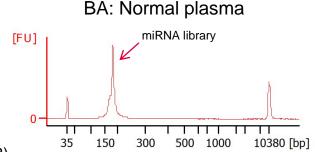
BA: Lung libraries

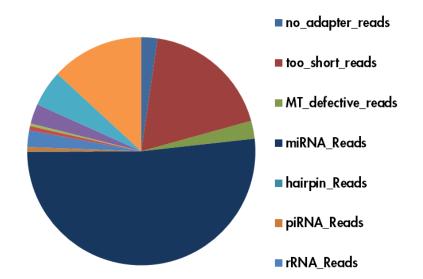
Sequencing summary

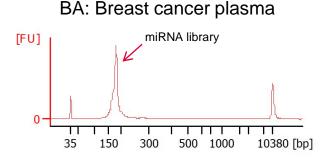

-	•	
Sample	Mapped miRNA	
K1	75%	
K2	67%	
K3	67%	
L1	64%	
L2	68%	
L3	67%	

The QIAseq miRNA workflow prepares robust libraries from tissues, enabling a high percentage of miRNA reads without gel excision.

Volcano plot (fold-regulation vs. p-value)

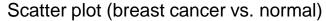

Use the GeneGlobe Data Analysis Center to easily identify differentially expressed miRNAs.

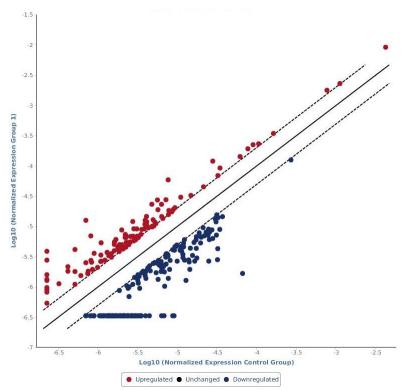



Serum and plasma: High mapped miRNA percentages

QIAseq miRNA Library Kit workflow on plasma total RNA

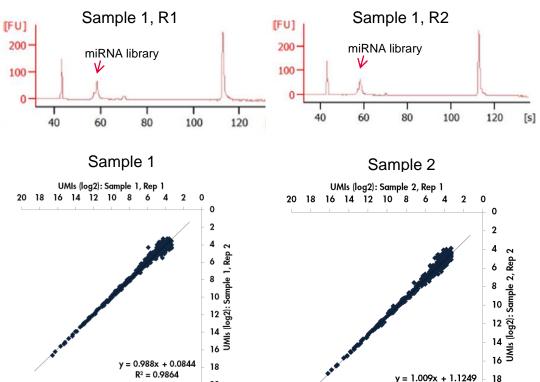
- miRNeasy Serum/Plasma Kit: 200 µl input
- Total RNA input: 5 μl RNA eluate (80 μl of serum equivalents)
 - Normal (N) plasma (n = 3)
 - Breast cancer plasma (n = 3)
- Sequencing: NextSeq, 75 bp Single Read
- miRNA mapping %: 52 (N1), 54 (N2), 47 (N3), 49 (BC1), 41 (BC2), 57 (BC3)






The QIAseq miRNA workflow prepares robust libraries from plasma, enabling a high percentage of miRNA reads without gel excision.

Volcano plot (fold-regulation vs. p-value)



- 123 miRNAs upregulated (6 significantly)
 - miR-520g-3p: Associated with important prognostic factors in breast cancer patients
- 179 miRNAs downregulated (31 significantly)
 - Use the GeneGlobe Data Analysis Center to easily identify differentially expressed miRNAs.

Exosome samples: High mapped miRNA percentages

- Isolation: exoRNeasy (1 ml plasma processed)
- Samples: Four total RNA samples (2 donors, 2 replicates)
- RNA input: 5 µl of RNA eluate

read set	Sample 1,	Sample 1,	Sample 2,	Sample 2,
redu set	Rep 1	Rep 2	Rep 1	Rep 2
total_reads	3,454,577	3,539,076	2,531,228	6,230,468
no_adapter_reads	321,093	276,815	345,974	562,212
too_short_reads	737,228	799,712	461,630	1,240,571
UMI_defective_reads	192,311	154,736	194,358	398,158
miRNA_Reads	1,333,379	1,424,014	913,946	2,413,667
hairpin_Reads	2,787	2,851	2,078	6,554
piRNA_Reads	29,049	30,768	23,773	62,763
rRNA_Reads	93,880	92,517	83,114	201,736
tRNA_Reads	18,248	18,566	16,370	41,872
mRNA_Reads	12,127	12,383	9,533	24,309
otherRNA_Reads	149,227	152,885	88,306	239,613
notCharacterized_Mappable	135,715	139,635	120,375	326,720
notCharacterized_notMappable	429,533	434,194	271,771	712,293
miRNA Mapping %	38.6	40.2	36.1	38.7

Outcome: High mapping percentage to miRNAs; low mapping percentage to OtherRNA reads (often observed with other commercial kits).

 $R^2 = 0.9865$

- 1 miRNA background
- 2 QIAseq miRNA sequencing: Product overview
- 3 Data analysis overview
- 4 Performance & application data
- 5 Summary and questions

QIAseq miRNA

miRNA-focused next-generation sequencing library prep kit and integrated bioinformatics/data analysis solution

What can be done with the sequencing data?

- Differential expression calculations of miRNA from highly multiplexed samples
- Novel miRNA discovery

What are distinguishing features of the QIAseq miRNA Kit?

- Gel-free, rapid workflow
- Broad RNA input: 1-500 ng
- Library prep from serum, plasma, biofluids, cells and tissues
- Integrated Unique Molecular Index (UMI) technology
- Highly optimized chemistry
- All-in-one-box solution

Questions?

Jonathan Shaffer, Ph.D.

Jonathan.Shaffer@qiagen.com